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Abstract--Upper and lower bounds for the creeping flow of an Ellis fluid past an assemblage of solid spheres 
are obtained using a combination of Happel's free surface model and variational principles. The arithmetic 
mean of the hounds agrees closely with the experimental data on flow through porous media. For Ellis 
numbers approaching infinity, the analysis also predicts the bounds for a power law fluid. 

1. INTRODUCTION 

Fluid-particle systems with large volume fraction of solids are encountered in flow through 
porous media and in fluidized beds. Several attempts have been made to model these systems, the 
most popular of which are the free surface cell model of Happel (1958) and the zero vorticity 
model of Kuwabara (1959). In these models, wall effects and end effects are neglected and the 
assembly of particles are assumed to be uniformly spaced in the fluid. The interaction of a 
particle with the neighbouring ones is modelled by assuming the particle to be surrounded by a 
hypothetical spherical envelope whose radius is related to the voidage of the multiparticle 
assemblage. Each sphere with its spherical envelope is uncoupled from the system and treated 
separately. The particle interaction and the voidage are imposed on the cell by the position of the 
outer spherical boundary with respect to the sphere diameter and the mathematical boundary 
conditions placed on the surface. The free surface medel of Happel imposes a zero shear stress 
and zero radial velocity on the hypothetical surface while the model due to Kuwabara imposes a 
condition of zero vorticity. Therefore it is quite clear that in the Happel's model, no force would 
exist on the hypothetical fluid surface except in the direction of the normal. Furthermore, since 
the radial velocity on the hypothetical fluid surface is zero, the cell does no work on the 
surroundings. On the other hand, the latter model is in conceptual error, for, the unit cell does 
work on the surroundings (Happel & Brenner 1965). The free surface model enables prediction of 
pressure drop and hindered settling in concentrated systems of spheres (Happel & Brenner 1965) 
and the drag in packed and fluidized beds remarkably well in the range of porosities 0.3 ~< ~ ~< 0.6. 
Using the above cell models, the flow of a Newtonian fluid past an assemblage of solid spheres 
was analysed by Happel (1958) for creeping flow and by Le Clair & Hamielec (1968) and 
El-Kaissy & Homsy (1973) for intermediate Reynolds number flows. 

The flow of non-Newtonian fluids through porous media is encountered in polymer processing 
operations, recovery of underground oil etc., and many experimental studies (Savins 1969) have 
been reported treating the polymer melt or aqueous polymer solutions as power law fluids. The 
flow of a power law non-Newtonian fluid past a single sphere has been studied by a number of 
investigators (Tomita 1959; Wallick, Savins & Arterburn 1962; Slattery 1962; Wasserman & 
Slattery 1964; Adachi, Yoshioka & Yamamoto 1973). However, despite the fact that the Ellis 
model is superior to the power law model in that it predicts a finite viscosity at zero shear rate, the 
flow of a non-Newtonian Ellis fluid past solid spheres has not been analysed in detail. The 
creeping flow of an Ellis fluid past single solid and fluid spheres was analysed theoretically by 
Hopke and Slattery (1970) and Mohan and Venkateswarlu (1974) respectively. Sadowski and Bird 
(1965) and Sadowski (1965) studied the flow of an Ellis fluid in a packed bed using aqueous 
solutions of polyethylene glycol, polyvinyl alcohol and natrosol. A capillary approach was used 
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by them for correlating the pressure drop data. In the present work, the bounds on the drag 
coefficient are obtained for the creeping flow of an Ellis fluid past an assemblage of solid spheres 
using a combination of Happel's free surface model and the variational principles due to Slattery 
(1972). The results are compared with the experimental data of Sadowski (1965). 

2. S T A T E M E N T  OF THE PROBLEM 

Consider the steady, incompressible, creeping flow of an Ellis fluid past an assemblage of 
insoluble solid spheres of radius a (figure i). The internal sphere moves in the direction of the 
positive Z-axis with a velocity Vo (equal to the superficial velocity of the fluid in the assemblage) 
inside a hypothetical spherical fluid envelope of radius R~, on which the radial velocity and 
tangential stress are zero. The equation of continuity and the equation of motion for the flow 
situation are: 

V . v : O ,  [1] 

- 7 p  + V . 7 + p f = 0 ,  [2] 

where v is the velocity vector, r is the extra stress tensor, p is the pressure, p is the density of the 
fluid, and f is the body force. 

In the spherical polar co-ordinate system (R, 0, ~b), the boundary conditions on the surface of 
the sphere are given by 

At r = l, vr= Voz, 

vo = - Vo(1 - z2) '/2, [3a,b] 

where z = cos # and r = R/a .  

The boundary conditions on the free surface are 

At r = r = , V r = 0 ,  

±(vq=0, fro=0 or a r \ r /  [4a,b] 

where r~ is the dimensionless radius of the cell related to the voidage in the assemblage by the 
relation 

r~ = R J a  = (1 - e) -'/3. [51 
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Figure I. Schematic diagram of the flow system. 
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Analysis 
For the steady creeping flow of an incompressible fluid, two variational principles were given 

by Slattery (1972). In what follows, we use the notations V, T, I, n and ~ to represent the flow 
domain, the stress tensor, the unit tensor, the normal on the bounding surface S and the body 
force potential respectively. 

The velocity variational principle: 

fv E dV <~ fv E*dV- fs-s~ (v*-v).([T-ptkI].n)dS. [6] 

The quantities with superscript asterisk are evaluated on the basis of a trial velocity profile that 
satisfies the equation of continuity and prescribed conditions for velocity on So, where So is that 
part of the bounding surface on which the velocity is explicitly specified. 

The stress variational principle: 

fv E d V ~ - f v  E*dV+ fs V'([T*-p~I]'n)dS" [7] 

The quantities with a superscript asterisk are evaluated on the basis of a trial extra stress profile 
that satisfies Cauchy's first law and the prescribed conditions for stress on S,, where S, is that 
part of the bounding surface on which the stress is explicitly specified. 

The work function E and the complementary work function Ec in inequalities [6] and [7] are 
defined as 

and 

fo I1 E = 71 dH 

=f"~dII, 
E~ .Io 4,7 [8a,b] 

where r/ is the generalised Newtonian viscosity and H and IIT are the second invariants of the 
rate-of-deformation and the stress tensors respectively. Furthermore, for the flow of an Ellis 
fluid, the work function E is not a homogeneous function and hence only bounds on the upper 
and lower bounds for the energy dissipation rate per unit volume are obtainable (Slattery 1972). 
When the Ellis parameter a I> I, 

2E t> tr (¢ • Vv) >/cr + 1E. [9] 
O~ 

For the free surface model, the energy dissipation rate is wholly within the unit cell as the cell 
does no work on the surroundings. The bounding surface S is the surface of the solid sphere and 
the free surface. On the former, the velocity is specified and hence (S - So) is the free surface. 
For a trial velocity profile, v* = 0 on the free surface. Using [4], it can be shown that 

fs v* - v ) '  ([T - p ~ l l "  n) d S  = O. 
S~ 

[1o] 

Further, for a trial stress profile that satisfies fro = 0 on the free surface, we have, from [4a] 

f s  v" ([T* - p4~l] • n) d S  = O. 
Sl, 

[11] 
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Combining [6], [7] and [9] to [ll], the bounds on the upper and lower bounds for the energy 
dissipation rate g are given by 

>i - E * d V  + v . ( [ T * - p ~ I [ . n ) d S  . [12] 
OL' ( r = l )  

3. UPPER BOUND 

Since the flow is 4, independent, a dimensionless stream function 6 is defined such that 

v, 1 Off vo 1 3ff [13a,b] 
V---o = - ~ sin 00-0' V--'~ = r sin 0 aS" 

A trial stream function profile is chosen of the form 

O* = (A,r2 + a2r~ + A3 + Z4r4) (1 -  z2). [14] 

A t + A 2 + A 3 + A 4 = - ~ ,  

2A, + o'A2- A 3 +  A4 = - 1, 

r®3A, + r=~+'A2 + A3 + r~SA4 = O, 

(o" - 1)(o" - 2)r=¢+~A2 + 6A~ + 6A4r= 5 = 0. [15] 

For ~r = 1, [ 14] with the constants A, to A 4 given by [15] reduces to the stream function profile for 
Newtonian flow. 

The constitutive equation for the Ellis fluid is 

271o 
r = 1 + (So/V~r,n)"- '  D, [16] 

where So = X/H., rio is the shear rate viscosity, r ,a is an Ellis model parameter and D is the 
rate-of-deformation tensor. 

Using [Ba] and [16], it can be shown that 

no( Vol a f 
2 f v  E ' d  V= 4 f v  ' *2[  1+ a ~ I ( N t S * Y ' - ' ]  dV [17] 

= 7rno Vo2aj,/2, [18] 

where 

j,=f', £' S * 2 [ I + - ~ I ( N , ' * ) ~  ' ] x - 4 d x  d z  [19] 

and 

N, = (~7oVo/~/2ar,a), x = I/r and x= = lira. 

The quantity ,~* is obtained as the solution of the equation 

S *~ ,]~ = 
~- [1 +(N,S*)" I-/'*, [20] 

Using [3], [4], [13] and [14], we get, 
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where the dimensionless second invariant of the trial rate-of-deformation tensor, I/* is given by 

H*= I I * ( a / V o ) 2 =  6z2[(2 - o-)a2x3-"+ 3A3x4-2A4] 2 

. 

From a macroscopic energy balance, 

VoFe = ~ [22] 

Since the pressure p is defined as 

it is required that 

Therefore, from [25], 

1 
P = - 3 tr [T] 

and the elements of the extra stress tensor are given by 

zij = Tij - PSo, 

tr [¢] = 0. [27] 

C + E + F = O ,  

C ' + E ' + F '  =0, 

C" + E" + F" = 0. 

[26] 

[281 

where Fd is the drag force. 
Equations [18] and [22] and the first of the inequalities in [12] combine to give 

C~ReE _< Ji [23] 
YE= 24 ~ 6 '  

where Cd is the drag coefficient and Re~ is the Reynolds number 2aVoa/'Oo. The upper bound YuB 
is obtained as the minimum of the R.H.S. of [23]. 

4. L O W E R  B O U N D  

For the Ellis fluid, the definition of Ec given by [8b] yields 

E~ = ~-( l + (N, So) ~-' 

Trial extra stress profiles are chosen of the form, 

r * ,  = - ( 'OoVo/a)(Cx ° + C ' x  ~ + C " / x ) z ,  

r~o = - ( 'OoVo/a)(Ex  ° + E ' x  B + E " / x ) z ,  

z~, ,  = - ( r l o V o / a ) ( F x  ° + F ' x  ~ + F " / x ) z ,  

"r*o = - (~OoVo/a)(A 'x  B + A " / x ) ( 1  - z2) 1/2. [25] 
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Substituting the trial extra stress profiles into the equation of motion and equating 
[02(p + p6)*/OxOz] = [02(p + p6)*MzOx], and using [28], it can be shown that 

E=F,  

E ' - -F ' ,  

E" = F", [29] 

D=2, 

A' = - 3F'/(B - 1), 

F" = 2A "/3. 

Using the condition of zero shear stress on the free surface, 

A " = - A ' x ~  B ÷ '  [30] 

Equations [28] to  [30] specify ten of the constants that appear in [25] in terms of F, F '  and B. 

Using [24], we have 

l y E *  d V = Vo2a/2)J2, [31] (Tmo 

where 

J z = f  l' fx'~ S*2[I+~+I(N1S*)° 1] x 4dxdz [32] 

and from the trial extra stress profile [25], 

- _ . . . .  : : ( l - z : ) . _  
S .2 = 6(Fx 2 + F'x" + r IX) z . ~ a ' x  B + a"/x)L [33] 

From the equation of motion, the trial pressure profiles are obtained on integration of the 
0-component as 

(p + 06)* (~oVo[-~ = [- Fx2 + {(3 - B)A' - F'}x B + (4A" - F")/x]z + Co(X), [341 

where Co is some function of x. 
Using [3], [25] and [28] through [30] and [34], the surface integral term in [12] becomes, 

fs - 06I]*" n) dS = 4 ~ o  Vo2aF. [35] ([T V '  
( r~ l )  

Combining [12], [22], [31] and [35], 

VoF,~ = ~ >>- a + 17rrloVo2a(4F _ JJ2). [36] 
Ot 

Inequality [36] is written in dimensionless form as 

Y~ = ( ~ )  >~-~I  ( 4 F -  Jd2). [37] 

The maximum of the R.H.S. of inequality [37] gives the lower bound YLB on Y~. 
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5. R E S U L T S  A N D  D I S C U S S I O N  

The upper bound Yu, was obtained by minimising the R.H.S. of inequality[23]. From [15], 
and [19-21], it is seen that J, is a function of or alone and hence a Fibonacci search (Mangasrian 
1972) on ~r yields the upper bound. For each value of ~r in the search, values of A, to A4 were 
evaluated by solving the system of equations [15]. The quantity S* in the integral [19] was 
obtained from [20] and [21] by a Newton-Raphson interation. The lower bound YL, was 
evaluated by maximising the R.H.S. of inequality [37] using a Rosenbrock search (Rosenbrock & 
Storey 1966) on F, F'  and B. The integrals J~ and ./2 were evaluated by a two-dimensional 
Simpson's quadrature. 

The upper and lower bounds on Y~ are plotted in figure 2 for N, -- 0.15 and for various values 
of a and E. It is seen that the bounds diverge with increasing values of a. This is due to the fact 
that YoB and Y~, are bounds on the upper and lower bounds. However, in most non-Newtonian 
flow situations, the values of N, and a are small and thus the bounds are sufficiently close for 
practical purposes. 

Certain limiting behaviour on the bounds are also observed. For N, ~ 0, inequality [9] 
becomes 

[v fv _<.+1 ( 
2EdV= tr(~". V v ) d V ~ - ~ - a  j v 2EdV. [38] 

Since the trial stream function and the stress functions are chosen in a form that reduce to the 
Newtonian profiles, the upper and lower bounds on [f 2E d V] yield the energy dissipation rate. 
Thus, because of inequality [38], the upper bound on the energy dissipation rate yields the 
Newtonian value and the lower bound yields (a + 1)/2a times the Newtonian value. Further, 
when N, ~ 0 and a --* 1, both the bounds reduce to the Newtonian value given by Happel (1958). 

When N, is non-zero and a ~ 1, [16] indicates Newtonian behaviour with a viscosity equal to 
(rio/2). Thus, the bounds reduce to half the value of Y for a Newtonian fluid. 

The limiting case N, ~ oo, corresponds to the power law fluid behaviour. From [16] it can be 
shown that 

"q = K(2//)  '"-'j2 (power law), 

8o I I I 
Upper bound 

50 - - - - - -  Lower bound 

N, =0.15 

"----~ ......~ 

20  - ~ ~ ,~,~ 

\ 0 6  

\ 
~ _ _  ~, 0.7 

~O 

oz 

2 0 9  

i ~ z O  99 

0 7  I I 
bO [ 5 2O  2 5 30  

Q 

Figure 2. Upper and lower bounds on Y~ vs a for various va ues of t (N, = 0.15). 
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where K = no(2N,~) "-">~2° (Vo/a), " ' "  is the consistency index and n = lie is the flow behavior 
index. 

The definition of the Reynolds number for the power law fluid given by 

Re,, = (2a)"Vo 2- "p/K yields, for large N , ,  

Y.= YPCN, I~/2)" °']+, [39] 

where Ye = C~ReM24. 
Equation [39] predicts a linear asymptotic behaviour for a plot of Yu vs N, on log-log 

co-ordinates (figure 3). The asymptote has a slope of (1 -  a)/o~ and passes through the point 
(N, = V'2, ( Ye.)~ = (Yp)~), which yields the value of the bound on Y for a power law fluid with a 
flow behaviour index n = l/a. Thus, it is seen that the present analysis also yields the bounds on 
Y for the creeping flow of a power law fluid past an assemblage of spheres. These bounds are 
seen to be close despite the bound-on-bound approach used in obtaining the bounds on Y~. 

6. C O M P A R I S O N  W I T H  E X P E R I M E N T A L  D A T A  

It is profitable to represent the bounds on the drag as the bounds on (f .  ReE) where f is the 
Fanning friction factor (a AP/2p Vo2L). It can be shown that, for a packed bed of porosity • and 
height L over which the pressure drop is Ap, 

f .  ReE = 9 lie ( 1 - •). [40] 

The experimental data on pressure drop for the flow of Ellis fluids in a packed bed was 
obtained by Sadowski (1%5). Typical experimental values of Sadowski are compared in table 1 
with the bounds on (f. ReE) predicted from the present theory. A value of • = 0.45 was assumed 
since Sadowski did not report values for the voidage. It is seen from table 1 that the arithmetic 
mean of the bounds on the pressure drop for aqueous solutions of polyethylene glycol and 
polyvinyl alcohol agrees with the experimental values within 7% while, for solutions of Natrosol, 
the experimental values are much larger. This is understandable because Sadowski reported that 
his Natrosol solutions exhibited viscoelastic effects. 

The results of the present investigation reveal that a combination of Happel's free surface 
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"Fable 1. Comparison of the theory with experimental data of Sadowski (1%5) 

589 

Aqueous polymer 
solution N, a (fgeF_ )o~ ffReF.)t,~ (fRe~ )L~ (fRe~: ) . . . .  

Polyethylene glycol 
(10% by weight) 0.1 1.651 133.2 137.3 108.8 123.0 

Polyvinyl alcohol 
(6% by weight) 0.1 2.4 108.9 135.6 95.2 115.4 

Natrosol 
(1% by weight) 3.0 1.64 110.8 50.0 40.0 45.0 

Natrosol 
(I.85% by weight) 3.0 2.006 38.0 33.9 25.2 29.6 

model and variational principles yield close bounds on the energy dissipation rate for the creeping 
flow of an Ellis fluid and that the drag can be predicted with reasonable accuracy for purely 
viscous systems using the arithmetic average of the bounds. The present analysis also forms a 
first step towards studying non-Newtonian flow in complicated geometries. 
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